Bloom-Filter,即布隆过滤器,1970年由Bloom中提出。它可以用于检索一个元素是否在一个集合中。
Bloom Filter(BF)是一种空间效率很高的随机,它利用位数组很简洁地表示一个集合,并能判断一个元素是否属于这个集合。它是一个判断元素是否存在集合的快速的概率。Bloom Filter有可能会出现错误判断,但不会漏掉判断。也就是Bloom Filter判断元素不再集合,那肯定不在。如果判断元素存在集合中,有一定的概率判断错误。因此,Bloom Filter不适合那些“零错误”的应用场合。而在能容忍低错误率的应用场合下,Bloom Filter比其他常见的算法(如hash,折半查找)极大节省了空间。
它的优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率和删除困难。
参考文献:
博文一:
博文而: